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Rheology of polypropylene in the solid state 
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The tensile behaviour of a commercial grade of isotactic polypropylene was tested in 
a temperature range between 20 and 150~ with a video-controlled testing system which is 
capable of imposing a constant true strain-rate within the neck automatically. The results are 
displayed in the form of effective stress-strain curves and modelled by a constitutive equation in 
a multiplicative form. It is thus shown that, for each temperature, the plastic response can be 
described up to very large strains (~ _~ 2.0) by a set of four parameters. The assumptions 
introduced in this modelling are critically discussed in order to check the validity of the simplifying 
hypotheses (strain homogeneity, isochoric deformation, etc.). The constitutive equation thus 
obtained was utilized in a finite difference code in order to predict the development of stretching 
instabilities of polypropylene. The simulation gives access to the engineering stress-strain 
response of the stretched test piece and to the detailed kinetics of the incipient neck. It is found 
that the severity of the instabilities is less at room temperature than near the melting point because 
of the decrease of the strain-hardening and of the strain-rate sensitivity with temperature. 

1. I n t r o d u c t i o n  
Tensile testing has been widely used to characterize 
the mechanical properties of solid polymers. Gener- 
ally the load elongation data are only transformed 
into engineering (or "nominal") stress-strain curves 
by dividing the load and the elongation by the initial 
cross-section and initial length, respectively. These 
engineering curves are interesting from a practical 
point of view but, due to the early occurrence of 
necking, they do not provide a correct description of 
the mechanical behaviour of the material which re- 
quires the measurement of the "true stress" and "true 
strain" in local terms [1]. 

In view of assessing the intrinsic response of poly- 
mers, an early method was proposed by Meinel and 
Peterlin [2], who determined the "true" flow curve of 
high-density polyethylene by means of a photographic 
technique. Their method involved the measurement of 
the current distances between ink dots printed on the 
specimen prior to deformation. This approach was 
criticized by G'Sell and Jonas I-3], essentially because 
the tests had been performed at constant cross-head 
velocity, so that the local strain rate appeared to vary 
by one or two orders of magnitude, and the tensile 
stress had therefore to be tediously corrected for this 
rate variation in view of obtaining the intrinsic behavi- 
our of the material for a prescribed strain rate. Sub- 
sequently, G'Sell and Jonas proposed a new tensile 
method [3] in which a constant true strain rate was 
precisely regulated locally in the centre of the tensile 
specimen. The major interest of the tests at constant 

local strain rate is to allow the derivation of constitu- 
tive equations for the polymer in the solid state [1, 
3-5]. Such equations are more particularly required 
for the modelling of different problems of plastic de- 
formation. Among them, the initiation and propaga- 
tion of necking are of prime importance from both 
theoretical and practical points of view (for instance, 
for the stretching of fibres and films). Different ap- 
proaches have been proposed: analytical derivations 
[6-9],  finite-difference scheme [5], finite-element 
method [10-15]. Another domain of application con- 
cerns compression, especially for forging simulations 
[12, 13, 16-18], and more recently multiaxial impact 
[19]. 

Although the use of rheological coefficients meas- 
ured in tension can lead to some problems in the 
modelling of other types of loading, e.g. compression 
[12, 13], the tensile test constitutes the reference test 
for the characterization of solid-state rheology. How- 
ever, for polymers, only a few data are available in the 
literature, among them the stress-strain curves ob- 
tained by Aly-Helal [5] for high-density polyethylene 
at three temperatures. 

The purpose of the present work was to characterize 
the solid-state rheology of a widely used semi-crystal- 
line polymer, namely polypropylene, as a function of 
temperature. Experimental stress-strain curves, re- 
corded in uniaxial tension at different strain rates by 
means of a video-controlled testing system, will be 
presented and modelled through a simple constitutive 
relation. As an example of the application of such 
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a relation, the development of stretching instabilities 
will be subsequently predicted for this polypropylene 
as a function of temperature. 

2. Experimental  procedure 
2.1. Specimen preparation and 

characterization 
The polypropylene used in the present work is pro- 
duced by Hoechst under the commercial reference 
Hostalen PPH 1050. Its melt index, measured at 
230~ under a 2.16kg load (ASTM-D 1238), is 
0.3 g/10 rain. It was processed in the shape of cylin- 
drical extruded rods, 20 mm diameter, and exempt of 
bubbles. Microscopic examination of 8 jam thick 
microtomed films between crossed polarizers reveals 
a fine spherulitic structure (Fig. 1), the diameter of the 
spherulites being equal to about 120 jam. The material 
was also characterized by wide-angle X-ray scattering 
with a monochromatic source at X=0 .179nm 
(Fig. 2a). The diffraction spectrum exhibits the main 
peaks of the monoclinic ~-structure of the isotactic PP 
(110, 040, 130, 1 1 1,131 + 041) and no significant 
trace of the hexagonal 13-structure. Superimposed on 
the crystalline peaks, a large hump is visible which 
corresponds to the X-rays diffused by the amorphous 
fraction. Also DSC thermograms were obtained 
(Fig. 2b) in order to measure the heat of fusion of the 
polymer: AHf = 76.4 J g-  1. With reference to the heat 
of fusion for fully crystallized polypropylene, 
AHfo = 165 J g-  t [20], this value corresponds to a de- 
gree of crystallinity of 46 wt %. Axisymmetrical hour- 
glass-shaped tensile specimens were machined out of 
extruded rods, with a minimum diameter Do = 6 mm 
and an initial radius of curvature R~ ~ = 20ram 
(Fig. 3). As a result of this particular shape, the neck 
was always initiated at the middle of the gauge length, 
where the cross-section is minimum. 

2.2. Determination of the effective strain 
and stress from the experimental 
measurements 

As stated in a previous work [3] the variations of the 
effective stress, (y, and strain, ~, at the minimum sec- 
tion of an hourglass-shaped specimen can be readily 
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Figure 2 (a) Wide-angle X-ray scattering spectrum of the material. 
(b) DSC melting curve obtained at a scanning rate of 10 ~ rain-1. 
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Figure 3 Hourglass-shaped tensile specimen. 

Figure 1 Spherulite morphology in the extruded polypropylene. 
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derived at any time, t, during a tensile test from the 
measurements of the minimum diameter D(t), the 
radius of curvature R~(t) and the load F(r), providing 
several reasonable approximations are verified. 

Basically, in a sample subjected to homogeneous 
uniaxial tension, the component of the strain-rate ten- 
sor along the axial direction z is expressed through the 
relative rate of elongation of a given slice of material in 
the calibrated portion by the relation 

1 dL 
g= - ( 1 )  

L dt 

where L is the current length of the slice and Lo its 
original value. The current deformation, ~=, is thus 



obtained by integration as 

fi Gz = e-z. (u) du 

' "  

Equation 2 is the classical expression of the "true" 
strain for a standard sample of uniform cross-section 
over a length L0, but here we will apply it locally for 
a thin slice of material situated right at the median 
plane of the specimen, where the cross-section is min- 
imum. If this slice undergoes an isochoric deformation 
(that is, if the polymer is supposed to be incompress- 
ible), the following equation holds 

L D  2 = LoD2o (3) 

where Do and D are the initial and current diameter of 
the slice, respectively. It follows from Equations 2 and 
3 that 

~= = 2 1 n ( ~ )  (4) 

which expresses the local relation between the axial 
strain and the radial strain err = l n ( D / D o )  = - gzz/2.  

Following the definition associated with the yon 
Mises flow theory the effective strain rate, ~, and the 
effective strain, e, are expressed by the relations 

I2 ql/2 
= ~(~,. ~,j)j (5) 

fo = ~(u)du (6) 

where ku denotes the components of the deviatoric 
strain-rate tensor. In the particular case of a slice 
situated in the centre of an hourglass-shaped specimen, 
the shear components vanish for symmetry reasons. 
The effective strain rate and strain can thus be approx- 
imated by the axial components through the relations 

de - 
dt 

2 dD 
- D d t  (7)  

e = 2 1 n ( ~  -~~ (8) 

In the expression of the effective stress in the same 
material slice, the direct treatment of the tensile load 
and the local specimen diameter only gives access to 
the average axial component Oz= = 4 F / r c D  2 (some- 
times called "true" stress or Kirchoff stress). However, 
this information is not sufficient to describe the state 
of stress if the material is locally subjected to a triaxial 
state of stress, as is the case in the centre of a neck. For 
a material obeying the yon Mises associated flow law, 
this problem was solved by the introduction of the 
effective stress, which corresponds to the uniaxial 
stress which would produce the same effective strain 
rate as the one generated by the complex triaxial stress 

field 

cr = s u .  sij (9) 

where s u denotes the components of the deviatoric 
stress tensor. It is convenient to characterize the over- 
all effect of triaxiality in the central cross-section of 
a neck by a scalar factor FT, called triaxiality factor, 
which expresses the average ratio of the effective stress 
to the axial stress. Several expressions for such a factor 
can be found in the literature 1-21-25,1. The most 
popular is due to Bridgman [22-1, who showed that the 
effective stress is constant in the central slice of the 
neck provided the following assumptions are verified: 
(i) the neck is symmetrically concave with a large 
radius of curvature, (ii) the material is isotropic and 
rigid-plastic and, (iii) the flow stress is insensitive to 
strain rate. Under those conditions, FT is a function of 
geometrical parameters only and expressed through 
the relation 

-_ ,/(, + + 11o, 

As we will show in Section 4, the real case of necks in 
polypropylene deviates somehow from the ideal situ- 
ation considered in the latter approach. However, to 
a first approximation, the Bridgman formula will be 
considered as operationally valid and we will deter- 
mine the constitutive relations by means of the follow- 
ing expression 

4F 
o = F T r t D  2 (11) 

by which the local effective stress is determined in the 
same slice as the effective strain from the parameters 
accessible experimentally. 

2.3. Tensi le  t e s t ing  s y s t e m  
The minimum diameter of the specimen was measured 
at room temperature before it was attached to the 
grips of an MTS servo-hydraulic testing machine 
(Fig. 4). During the tensile experiments the profile of 
the tensile samples was followed in real-time by 
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Figure 4 Schematic representation of the video-controlled testing 
system. 
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a video camera interfaced with a fast-processor PC 
computer equipped with an image-digitizing card 
which makes it possible to determine, at any time t, the 
profile of the samples and to assess the minimum 
diameter D(t) and the local radius of curvature Ro(t). 
From the latter couple of geometric data, the system 
computed dynamically the variations of the Bridgman 
triaxiality factor. Moreover, thanks to a ramp gener- 
ator controlled by an internal clock, the velocity of the 
hydraulic actuator is automatically adjusted in such 
a way to keep the strain rate g(t) constant in the 
minimum section of the specimen. The compute r is 
also interfaced with the load cell of the MTS machine 
(maximum load 50 kN). A detailed description of this 
system has been given elsewhere [26]. 

The tensile tests were performed at different temper- 
atures in an oven heated by convected hot air. The 
small volume of this oven allowed minimization of the 
pre-heating time and optimization of the temperature 
regulation ( + 0.5 ~ It was equipped with two win- 
dows on the front and rear faces for the videometric 
inspection of the specimen profile. During, the 
pre-heating of the specimen (for about 20 min), the 
thermal expansion of the polymer was dynamically 
compensated by a small displacement of the actuator 
in order to keep the load equal to zero. 

The data displayed on the computer-control mon- 
itor were the following: the specimen profile at a given 
time t, the ~(t) curve and the c~(a) curve. In all the tests, 
the ~(t) curve was checked to be linear to a very good 
approximation, which proves that the local strain rate, 
~(t), was actually constant. The files containing these 
curves were eventually transferred from the PC to 
a VAX computer (Digital Equipment), in order to 
allow a complete mathematical treatment and par- 
ticularly to derive the constitutive equation. 
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Figure 5 Specimen profiles recorded for different values of ~: 
( ) 0.00, ( - - - - )  0.39, ( - ) 0.80, ( - - - )  1.18, ( . . . .  ) 1.59. 
(T = 150 ~ k = 5 x 10 -4  s -1) 
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3. Results 
3.1. Variations of the profile and the 

triaxiality factor 
As an illustration of the capacity of the experimental 
system, the specimen profiles recorded at different 
deformation stages are displayed in Fig. 5 for 
T =  150~ and ~ = 5 x 10 - 4  s - 1 .  The corresponding 
variations of the Bridgman triaxia!ity factor are given 
in Fig. 6 among other curves obtained at different 
temperatures. Because of the special specimen shape, 
the Bridgman factor is initially equal to 0.964. It 
increases in the viscoelastic domain (e ~< 0.2), then 
decreases due to the occurrence of necking which 
induces a rapid decrease of the local radius of curva- 
ture. It reaches a minimum of about 0.94-0.95 in the 
strain range between 0.7 and 1.2, and eventually in- 
creases again when the shoulders of the neck propa- 
gate towards the sample extremities. At the end of the 
experiment the central part of the specimen exhibits 
a roughly cylindrical shape and FT becomes close to 
unity. From the variations of FT with temperature, it 
appears that the location of the minimum shifts to- 
wards higher deformations when temperature in- 
creases, which means that the neck stabilizes later. 
A decrease of the minimum value is observed in the 

Figure 6 Variations of the Bridgman triaxiality factor with ~ for 
different temperatures (k = 5 x 10- 4 s -  1 ). 

temperature range from 20-110 ~ but the values at 
110 and 150~ are similar. 

3.2. True stress-strain curves 
The tensile behaviour of polypropylene was studied at 
five temperatures: 20, 80, 110, 130 and 150~ For 
each temperature, different values of & ranging from 
10 -5 10 -3 s - t  were chosen (Table I). The lower limit 

T A B L E  I Tensile experiments 

Temperature  &(s- i) 

(~ l0 3 5 x 1 0  -4 2 x 1 0  -4 10 4 5 x l 0 - S  10-5 

20 x x x x 

80 x x x x 

110 x x x x 

130 x x x [ ]  [ ]  

150 x x [ ]  

([~) Obtained by strain-rate jumps  in the course of a tensile test at 
a faster strain rate. 
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was imposed by the total duration of the tensile ex- 
periment, which should not exceed 24 h, especially at 
high temperature because of polymer degradation. To 
avoid this problem, a technique of strain-rate down- 
jumps was utilized in several cases during regular 
speed experiments, for which the ~(e) curve corres- 
ponding to the slow strain-rate was recorded during 
a limited time only. In the present work, at 130 and 
150 ~ the lowest values of~ (10 -4 s -1 and 10 -5 s -1) 
were obtained in such jumps from an initial value of 
10-3 s-1. These experiments are indicated by square 
symbols in Table I. The upper limit was deduced from 
the works of Aly-Helal [5] and Marquez-Lucero et el. 

[27] who showed from detailed dynamometric ana- 
lyses and thermographic measurements that iso- 
thermal tests, exempt of significant self-heating, can be 
performed only if the plastic strain rate is lower than 
about 5 x 10- 3 s-  1. 

Figs 7 and 8 present typical effective stress-strain 
curves determined as indicated in the above section. 
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Figure 7 Typical effective stress versus effective strain curves deter- 
mined at different temperatures for a constant strain rate 
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Figure 8 Typical effective stress versus effective strain curves deter- 
mined at 110~ for different strain rates: (1) 10-3s-1,  
(2) 5 x 1 0 - 4 s  -1, (3) 10-4s  -x. 

They exhibit the classical shape commonly observed 
for semi-crystalline polymers [1, 3-5]:  the polymer 
yields progressively with a very gradual transition 
between the viscoelastic and plastic regions and no 
stress drop is observed. More specifically, these figures 
show the respective influences of temperature, T, and 
strain-rate, ~, on the or(a) curves 

at a given strain rate and a given strain, the stress 
decreases rapidly when the temperature increases 
(Fig. 7), 

at a given temperature and a given strain, the stress 
increases moderately with increasing strain-rates 
(Fig. 8). 

3.3. Determination of the constitutive 
equations 

A major interest of the effective stress-strain curves 
determined at constant strain-rate is the possibility to 
derive a constitutive equation directly, in the form of 
a mathematical equation relating cy to ~ and ~. Two 
types of analytical laws have been proposed in the 
literature and applied to solid polymers: the multiplic- 
ative type [1, 3, 5, 6, 25, 28, 29] and the additive 
type [4, 5, 30, 31]. In the first case, the influences of 
strain and strain rate are separated in a multiplicative 
way 

cr(~, ~) = fie) x g(~) (12) 

whereas for the additive law: 

r~(e, ~) = f'(~) + g'(g) (13) 

In the present work, a multiplicative form was pre- 
ferred because it is more convenient for computer 
simulations, as we will discuss later. The following 
expression of the constitutive equation was chosen 
[5, 6] 

~(e, k) = k[1 - e x p ( -  we)] e x p ( h e 2 ) ( g / g o )  m 

(14) 

where k is a scaling factor, [1 - exp( - we)] is a "vis- 
coelastic" term which describes the beginning of the 
cy-a curve (it is equal to zero for e = 0 and rapidly 
tends to 1 when a increases), exp(h a 2) takes into 
account the very important strain-hardening observed 
at large deformations. Finally, the term (~/~o)" ex- 
presses the strain-rate sensitivity as a power law, the 
reference strain rate, ~o (conventionally equal to 1 s- 1), 
being introduced for equation homogeneity. Conse- 
quently, the constitutive equation at a given temper- 
ature depends on four rheological coefficients only: 
the scaling factor k, the viscoelastic coefficient w, the 
strain-hardening parameter h and the strain-rate sens- 
itivity coefficient m. These parameters are determined 
from the experimental c~(a) curves by the procedure 
indicated below. 

For  a given temperature, T, and at a given strain, a, 
the variations of ln(cy) are plotted as a function ofln(~). 
The curve thus obtained appears to be a straight line 
whose slope is m. If the multiplicative law (Equa- 
tion 14) were strictly obeyed, m should be a constant. 
In fact, it may fluctuate somehow with a, so that the 
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average value of m is taken into consideration in the 
constitutive equation. 

At large strains, the viscoelastic term is practically 
equal to 1 (typically at ~/> 0.2 for 20 ~< w ~< 50). In this 
strain domain, In [~/k(~/~o)"] is plotted against ~2 for 
given temperature and strain rate. The curve is fitted 
by a straight line whose slope and ordinate give h and 
ln(k), respectively. Here again, the parameters h and 
k may show some fluctuations with ~ and the average 
values Over the strain-rate range are recorded. 

Conversely, at low strains, the viscoelastic term 
varies between 0 and 1, and the strain-hardening fac- 
tor is close to 1. In the strain range where exp(ha 2) is 
lower than 1.01, and for given temperature and strain 
rate, In { 1 - [~/(g/ko)m] } is plotted as a function of 8, 
with k and m being the values determined above. The 
slope of this straight line ( - w) gives access to the 
viscoelastic term, w, whose operational value is finally 
obtained by averaging over the k range. 

The procedure presented above was applied to the 
experimental stress-strain curves obtained with the 
polypropylene samples for the strain rate and temper- 
ature range under investigation. The best fitted values 
obtained for the parameters are displayed in Table II. 
It should be noted, however, that their precision is 
variable. It is fairly good for k and h, the fluctuations 
of these parameters with ~ being less than about 6% 
and 10%, respectively. Conversely, as stated before 
by Aly-Helal [5], the viscoelastic coefficient, w, is 
affected by erratic variations with ~ which can be as 
high as 40%. This is because the determination of w is 
based on a limited portion of the or(a) curves, within 
a range of small strains where the precision of the 
videometric method is limited. As for the strain-rate 
sensitivity coefficient, m, its fluctuations with strain 
were analysed carefully: at room temperature a grad- 
ual increase of m with ~ is recorded, the deviation from 
the average value being smaller than 20%. While 
approaching the melting point, the fluctuations be- 
come more erratic, with a standard deviation which 
may be as high as 40% in a few cases. In general terms, 
the evaluation of m is a serious task which requires 
numerous tests in a range of strain rates as large as 
possible. Unfortunately, this cannot be achieved read- 
ily because the tests at fast strain rates are eventually 
affected by self-heating effects, while the extremely 
slow experiments, not only are limited by thermal 
degradation, but also are sensitive to experimental 
artefacts (long-term temperature drift, electric power 
cut, etc). In order to check the correctness of the 
constitutive equation, the modelled stress strain 
curves corresponding to the set of parameters in- 
dicated in Table II are displayed in Fig. 9. 

T A B L E  II  Rheological coefficients of polypropylene 

T(oc) 

20 80 110 130 150 

k(MPa) 63.6 17.4 9.1 7.5 4.5 
h 0.52 0.36 0.39 0.45 0.40 
m 0.082 0.047 0.029 0.040 0.034 
w 31 32 33 26 23 
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Figure 9 Theoretical stress-strain curves determined from the con- 
stitutive Equation 14 for the same conditions as the experimental 
curves of Fig. 7. 

4. Discussion 
4.1. Validity of the basic assumptions 
It is clear from the preceding section that the deter- 
mination of the constitutive relations relies on the 
appropriate definitions of the effective strain and 
stress. The assumptions on which these definitions are 
based will be now discussed. 

As far as the strain is concerned, the calculation of 
and ~ from the experimental data implies two hy- 

potheses: the deformation is locally homogeneous and 
the material is non-compressible. The problem of the 
local homogeneity of the deformation can be dis- 
cussed from two combined viewpoints, microstruc- 
tural and mechanical. From a microstructural point 
of view, it is well known that the polymer deforma- 
tion during uniaxial drawing is intrinsically in- 
homogeneous at different scales [32]: in the neck, the 
initial spherulitic morphology is transformed into 
a microfibrillar structure. Moreover, the deformation 
within each individual spherulite is not homogeneous 
and depends on the orientation with respect to the 
tensile axis. Therefore our approach implies that 
a thin slice perpendicular to the tensile axis corres- 
ponds to a given stage of the spherulitic to microfibril- 
lar transformation and that the "macroscopic" strain, 
e, averages the intraspherulitic deformation [1]. 

To be actually representative of the deformation 
state, ~ should be constant within the slice, i.e. de- 
pendent on z only. To check this point a finite element 
calculation was performed in the case of an elasto- 
plastic behaviour [11]. The local effective strain, ~(r), 
was calculated for different sections perpendicular to 
the tensile axis and compared to the value given by 
Equation 8. It was found that the computed effective 
strain is fairly constant over sections corresponding to 
weak curvatures (e.g. at the inflexion point of the 
profile) but shows some variation in the centre of the 
neck. 

Similar results were obtained by Laugier [13] using 
a viscoplastic approach. Such effects have been pre- 
viously discussed in the literature for the case of metals 



Figure 10 Polarized transmission micrograph of a thin polypropy- 
lene film cut along the axis of a necked sample (T = 20 ~ a = 1.37). 

(e.g. [33]). They are associated with the different strain 
paths followed by material elements located at differ- 
ent initial radial and axial coordinates. Experi- 
mentally, in the present case of polypropylene, an 
interesting micrograph is presented in Fig. 10 in the 
particular case of a sample subjected to tension at 
20~ up to a local strain s = 1.37. This picture was 
observed between crossed polarizers with a thin slice 
(about 100 #m thick) cut and polished carefully along 
the axis of the specimen. The axes of the polarizers are 
at • 45 ~ off the tensile direction. This micrograph 
shows a collection of small cavities at the centre of the 
necked region, whose black contrast is due to the 
refraction by the void surfaces inclined on the plane of 
the cut. This observation confirms the damage re- 
vealed by the density decrease at large strains. Fur- 
thermore, the two pairs of black fringes on each side of 
the neck should be noted. These extinction lines are 
due to the birefrigence of the oriented macro- 
molecules. They are located where the optical paths 
for the two polarized components differ by a multiple 
of the mean wavelength (about 0.6 gm). Thus the two 
fringes, which correspond to the first and second order 
extinction, coincide with isodeformation lines. It is 
interesting to note that their curvature is weak. This 
indicates that, although a marked axial strain gradient 
is present in the shoulder of the neck, the radial strain 
gradient is quite moderate, especially in the middle of 
the neck. Consequently, the effective strain in- 

homogeneities in the median plane of the sample 
should be considered as small with respect to the 
current strain. 

The hypothesis of constant volume, for its part, has 
been criticized from experimental results for poly- 
propylene [34]: it has been shown that the total 
change of volume is less than 8% for a strain of 2.0 at 
70 ~ Several interpretations have been proposed for 
this decrease of density. The first one holds for the 
elastic contribution to the total strain. It is well known 
that the elastic Poisson's ratio of polymers is of the 
order of 0.35, that is lower than the value required for 
incompressibility (v = 0.5). For the maximum stress 
recorded here and owing to the elastic modulus of 
polypropylene, the relative volume expansion corres- 
ponding to this effect can be shown to be less than 
2.5%. More serious are the effects of the structural 
damage induced by the plastic deformation. It was 
shown previously (e.g. [34, 35]) that some crystallites 
may be fragmented while polypropylene is stretched, 
thus lowering the local density, in particular during 
the separation of the crystalline lamellae originally 
perpendicular to the tensile axis. This effect causes 
a typical whitening of the specimen often noticed in 
the literature. For  example, in polybutene-1, it was 
shown from in situ experiments [36] that this whiten- 
ing was actually initiated in the equatorial plane of the 
spherulites under  tension. Also it is plausible that 
voids or crazes appear during deformation, due to the 
microscopic concentration of stress at the centre of the 
spherulites or at the interspherulitic boundaries. 
Whatever the origin of the density variations, it does 
affect the validity of the relation s = 2 In (Do~D) which 
should be replaced, for a more rigorous analysis, by 
s = 2 ln(Oo/D) + A V / V  [3]. Apart from the fact that 
zXV/V is not available in real time in the present 
experiments, one can check that taking into account in 
the definition of s, the actual volume variation, less 
than 8%, would merely affect the effective stress- 
strain curves by a very small reduction of the strain- 
hardening at large strains, that is decrease by less than 
10% the parameter h. 

For the treatment of stress, it should be emphasized 
that the main reason why the effective variable must 
be introduced (instead of the more simple Kirchoff 
stress) is because the samples undergoing a necking 
process adopt a curved profile, so that radial and 
circumferential stress components ((Yrr and CYoo, re- 
spectively) develop locally. The rigorous prediction of 
the triaxial stress field in necked samples by finite- 
element numerical methods is not possible to date due 
to the complexity of the case of polymers: viscoelasti- 
city, strain-rate sensitive plasticity, strain-hardening, 
deformation-induced damage, etc. Furthermore, this 
would require introduction into the computer code of 
the constitutive equation of the material, which is 
specifically what one wants to determine. Therefore, 
we will estimate the validity of the assumptions made 
in this work from semi-quantitative arguments drawn 
from simplified simulations performed previously. The 
first of them, a finite element approach, was developed 
by G'Sell et al. [11] for a material obeying an elasto- 
plastic constitutive equation and applied to the case of 
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high-density polyethylene. The simulation was cap- 
able of predicting the development of a neck up to 
large strains and of computing all the components of 
stress. The variations of the average axial and effective 
stress were thus derived in the plane of minimum 
cross-section, leading to the variations of the theoret- 
ical triaxiality factor. It was found that the computed 
FT factor was of the correct order of magnitude, but 
systematically larger than the corresponding value 
deduced from the Bridgman formula. This discrep- 
ancy was attributed either to the limited number of 
finite elements in the mesh, or, more fundamentally to 
the neglect of the strain-rate sensitivity, which was not 
considered in the constitutive relation chosen to 
model the material. Conversely, the strain-rate sens- 
itivity was taken into account by Laugier [13], who 
introduced the constitutive equation, in its multiplic- 
ative form, into a viscoplastic finite-element code 
(FORGE2| Tensile testing of a polypropylene 
sample at a constant local strain rate was simulated, 
the triaxiality factor was computed as the function of 
strain and compared to the value given by the Bridg- 
man equation. In such a case the computed factor was 
systematically lower than the Bridgman one. 

Although the above studies are of conceptual inter- 
est and show that the finite element method is poten- 
tially able to solve the problems addressed here, its 
present state of development is not sufficient to draw 
precise conclusions about the errors introduced 
through the working assumptions. Nevertheless, all 
the simulations show that the correction brought to 
the Kirchoff stress by the Bridgman factor is correct in 
its sign (FT -- 1 < 0 for a concave curvature) and in its 
order of magnitude (0.9 < FT < 1). Furthermore, it 
should be remarked that the largest deviations from 
Bridgman's assumptions (anisotropy, damage, hard- 
ening, etc.) are expected when the strain reaches very 
large values, that is when the specimen takes a quasi- 
homogeneous profile (Fig. 5) and the triaxiality factor 
approaches unity. We can then consider, like most 
authors in the current metallurgical literature, that the 
Bridgman factor is operationally acceptable in a first 
approximation for semi-crystalline polymers. 

From the analysis developed above, several con- 
clusions can be drawn. 

(a) Although numerical simulations show that the 
effective strain suffers some variations in a given 
cross-section, the surfaces corresponding to constant 
values of ~ are generally not too far from planar cross- 
sections [13]. Therefore Equation 8 is expected to give 
a correct estimate of the average effective strain in the 
minimum section. 

(b) The constant volume assumption can be kept as 
a first approximation for a number of polymers. How- 
ever, it would be useful to apply more sophisticated 
techniques in the testing system in order to measure in 
real-time the volume variation and to take into ac- 
count this information in the measurement of e. 

(c) The choice of Bridgman's approach, for the es- 
timation of the triaxiality effect, is not rigorously 
validated to date in the case of polymers. However, the 
use of a more elaborate formula would increase the 

complexity of the treatment without changing con- 
siderably the current value of ~. 

(d) Consequently, the c~(e)curves determined in 
this work allow the determination of constitutive 
equations with a reasonable precision-to-complexity 
ratio. Such equations, which are macroscopic and 
phenomenological in nature, are likely to be used for 
the simulation of plastic instabilities during forming 
processes. As an example, we will examine later how 
the development of necks can be predicted during the 
stretching of axisymmetric test pieces. They can also 
help understanding the microscopic mechanisms and 
structural transformations which control the plastic 
behaviour of polymer, like the development of ori- 
entational textures along different deformation paths 
in semi-crystalline polymers [34, 35]. 

4.2. Validity of the constitutive equation 
The choice of a multiplicative or an additive form for 
the constitutive equation is not really a problem, be- 
cause both forms are nothing other than mathematical 
fits of the same set of experimental cy(~) curves ob- 
tained at different strain rates and temperatures. Both 
forms were actually utilized by Aly-Helal [5] in the 
case of high-density polyethylene. In the present work 
our choice of the multiplicative relation of Equa- 
tion 14 results from its analogy with the Norton-Hoff  
law usually considered for metals 

= K31/2  [ 3 ' / 2 ( e / e o ) ]  m (15) 

where K holds for the "consistency" of the material. 
Identifying this expression with the one in Equa- 
tion 14 leads to the following relation 

K = k[1 - e x p ( -  w~)] exp(haZ)(31/z) - " -1  (16) 

The major interest of this analogy is that it makes it 
possible to use viscoplastic computer codes, in which 
the solution of the mechanical problem consists in 
minimizing a functional of the velocity field. For in- 
stance, the code FORGE2 | has been extensively used 
to model different problems of solid-state deformation 
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in metals and polymers [12-19]. In the case of 
anisothermal problems, it is assumed that the temper- 
ature dependence is essentially due to the scaling fac- 
tor, k. This is a reasonable assumption, as it can be 
checked in Table II. Furthermore, the temperature 
dependence of k can be very conveniently modelled by 
an Arrhenius law, as shown in Fig. 11. 

4.3. Application of the constitutive 
equation for the simulation of plastic 
instabilities 

As a typical application of the constitutive equation, 
we will examine in this section the simulation of 
stretching instabilities in polypropylene at different 
temperatures by means of a finite-difference code de- 
veloped by G'Sell et al. [1, 25]. Although this ap- 
proach is restricted to the pseudo-uniaxial case of 
tension (by contrast to the sophisticated FEM codes 
which deal with fully triaxial cases) it is worthwhile to 
analyse it here because it can be run within a few 
minutes on the currently available microcomputers 
and predicts both the evolution of the specimen profile 
and the engineering stress strain curves. It is thus an 
interesting tool to check the influence of specific para- 
meters or in an extended version, to take into account 
the influence of adiabatic self-heating effects. 

The one-dimensional geometry used in the model is 
illustrated in Fig. 12, the specimen being decomposed 
into N slices. Each individual element, normal to the 
axis, is assumed to deform homogeneously and to 
obey the constitutive equation introduced in Equa- 
tion t4 with the set of parameters corresponding to 
the stretching temperature in Table II. The boundary 
conditions holding for the stretching process corres- 
pond to: (i) a constant overall elongation rate and, 
(ii) a zero strain rate for the material elements located 

t F 

I 
I I 

I 
I 
I 

F 

Figure 12 Finite-difference discretization of the tensile specimen. 

where/2z, Lo~ are the elongation rate and initial length, 
~i, ki are the strain and strain rate of each slice, and Lo 
is the initial length of the sample. Combining Equa- 
tions 17, 18 and 19 gives the strain rate in each element 

~i - Lo j 1 exp( wej) exp(he 2)FT,A J 
(20) 

at both extremities. The discretized form of the iso- 
thermal constitutive equation is then 

cyi = k[1 - exp( - w~i)] exp(h~)(~i/(Zo)" (17) 

where cyi is the effective stress in the current slice 
labelled i. In the limit of slow stretching rates, the 
inertia effects can be neglected so that the mechanical 
equilibrium of the system is expressed through the 
constancy of the load along the sample according to 
the following expression 

chA~ 
F = ~ = A ~ -  FT, - const (18) 

where ~=,, Ai and FT, are respectively the axial (Kir- 
choff) stress, the cross-sectional area and the triaxial- 
ity factor in the current slice. 

In the finite-difference scheme used, the total elon- 
gation rate s = dL/dt  of the sample, which is held 
constant during the simulation, is given by 

s u /•_Z/ = ~, Loi 
L~ = ~' Lo ~ooeXp(~i)~i (19) 
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60  ih ' ' i i t 2 0 ~  
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5 6 

Figure 13 Simulated engineering stress-strain curves at different 
temperatures. 
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The value of the strain rate, ki, is calculated directly 
and integrated over the time step, 6t, corresponding to 
a given increment of the length, 8L. These steps are 
adjusted dynamically in the course of the computation 
in such a way that the maximum strain increment 8~i 
is equal to 0.03. The number of elements, N, is chosen 
equal t o  120. The rheological coefficients introduced 

in the code (k, w, h, and m) are those determined 
experimentally for the polypropylene at the prescribed 
temperature, as displayed in Table II. 

The engineering stress-strain curves ( ~  = F/Ao 
versus ee = ( L -  Lo)/Lo), obtained with the simula- 
tion code at different temperatures, are displayed in 
Fig. 13. Also the simulated kinetics of necking during 
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Figure 14 Simulated kinetics of necking, during the drawing, obtained from the model at different temperatures {numbers indicate the 
nominal strain). (a) T =  20~ (b) T =  80~ (c) T =  110~ (d) T =  150~ 
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the stretching of the polypropylene is represented in 
Fig. 14. One notes that all the features of the experi- 
mental behaviour are reproduced by the simulation 
including the load maximum at the yield point, the 
sharp strain softening which occurs while the neck is 
formed, the stress plateau corresponding to the neck 
propagat'ion and the final hardening at large strains. It 
is interesting to note that plastic instabilities occur at 
all the temperatures investigated, even at the approach 
of the melting point (see, for example, the sharp pro- 
files at 150~ even though the effective stress strain 
curve displays a very progressive yielding). This is 
because, even at elevated temperature, the Consid6re 
criterion (corresponding to the critical condition 
d~/d~ < cy) is verified early at the central cross-section 
of the sample and that the stabilization (dcy/dc > cy) 
occurs lately when the effective stress-strain curve 
eventually shows a significant strain hardening. Unex- 
pectedly, it is even observed that the development of 
the neck is more important at elevated temperatures 
than at 20 ~ This is because the ultimate strain- 
hardening occurs much earlier at room temperature 
than at elevated temperature and that the strain-rate 
sensitivity, m, is globally lower when the temperature 
is higher. This destabilizing effect of temperature is not 
a general property of polymers. In the case of amorph- 
ous thermoplastics, for example, it is known that plas- 
tic instabilities progressively disappear when ap- 
proaching Tg because the yield point decreases faster 
than the large strain-hardening and the strain-rate 
sensitivity coefficient increases. 
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